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Stress, Anxiety, and its consequences

Stress is a part of our everyday lives.  But the impact of stress can have 
very different effects:

-Stress can lead to anxiety, that provides motivation and helps us to 
avoid reckless or dangerous activities

-However, when stress is experienced in excess, either in terms of 
intensity or duration, it can have deleterious consequences

-Depending on the individual, stress can lead to major psychiatric 
disorders, including drug abuse, post-traumatic stress disorder, 
depression, or suicide

-Stress is also a precipitating factor in disorders such as schizophrenia

We have found that stress can have very different effects on the 
dopamine system that  correlate with its effects on activation or 

depression of responses



Stress can be defined in a number of ways 
depending on the experiment

A stressor can be noxious, it can be physiological, and it can 
be psychological, with each type of stressor affecting
the system in common or unique ways.

How does a simple single noxious stimulus affect single dopamine
neurons?



Single Footshock Stimuli Produce Excitation and Inhibition
of  DA Neuron Firing Depending on Location

Medial VTA Lateral VTA

In contrast, neurochemical studies show that stressors increase
DA release in postsynaptic targets

However, this may be related to the type of DA neuron recording 
performed
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In Contrast to Single Stimuli, Repeated Footshock Induces a
Transient Increase in DA Neuron Population Activity Selectively 

in the Medial VTA

This is consistent
with neurochemical

studies of DA release
in response to 

footshock

What other stress-related systems that affect DA neurons are affected by footshock?
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Ventral Hippocampal Neurons
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Stimulation of the Basolateral Amygdala Also Drives
Ventral Hippocampal Neuron Firing

The Ventral Hippocampus 
exerts unique effects on 

DA neuron activity



Activation of the hippocampal-NAc pathway increases DA neuron 
population activity, but does not affect burst firing
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Inactivation of the Ventral Subiculum Prevents Repeated 
Footshock-Induced Activation of VTA DA Neuron Firing



Ventral Pallidum
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“silent” DA neuron inhibited by 
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Hippocampal hyperactivity would 
allow more DA neurons to be 

available for behavioral activation
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Activation of the pedunculopontine nucleus increases DA neuron 
burst firing, but does not affect population activity
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Regulation of Phasic DA
Neuron Activity
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NMDA only affects depolarized, spontaneously firing DA neurons



Model:

By setting the baseline tonic discharge of dopamine 
neurons, the hippocampal subiculum (via the accumbens-ventral
pallidum) controls the number of dopamine neurons that can be 
phasically activated by the PPTg

Therefore, the PPTg provides the “signal,” and the ventral 
subiculum is the “gain” or the level of amplification of this signal

The ventral subiculum of the hippocampus plays a role in 
context-dependent processing, which sets the type of response 
that is appropriate with the current context or setting

The “gain” is a property of the context, and can be varied 
depending on the characteristics of the environment
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Therefore repeated noxious stimuli increase the 
amplitude of phasic DA responses by increasing DA 

neuron population activity

Psychological stressors, particularly when severe, can 
also increase DA system responsivity via sensitization

Such stressors play a prominent role in 
drug abuse and across psychiatric disorders



Two Hours of Restraint Stress Increases
Tonic DA Neuron Firing to Baseline
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vSub Inactivation by TTX Restores 
Tonic DA Neuron Firing
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vSub Inactivation by TTX Reverses
Stress-Induced Sensitization to Amphetamine
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Repeated Amphetamine Treatment, like 
Restraint Stress, Increases Tonic DA Neuron Firing
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Amphetamine sensitization 
is also context-dependent, 
and cross-sensitizes with 

stress via the same neuronal 
substrates



DA

Ventral Subiculum

Pedunculopontine
Tegmentum

Behaviorally Salient
Stimulus

Benign Context:



Ventral Subiculum

DA

Restraint- or 
Amphetamine-induced 
Activation:

Behaviorally Salient
Stimulus

Pedunculopontine
Tegmentum



Acute or repeated restraint stress as well as amphetamine 
sensitization therefore increases DA neuron responsivity by 
causing a hippocampal-dependent activation of DA neuron firing.

This activation could be related to stress disorders such as drug 
abuse and PTSD, in which the system is oriented towards 
increased response to stimuli

In contrast, following an acute stressor there is often an opposite 
effect induced; one of sustained attenuation of DA neuron activity



Effects of Chronic Cold Stress on VTA DA Neuron Activity
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Chronic Cold Stress decreases DA neuron population activity 
primarily in reward-related medial VTA



Chronic Cold Stress Decreases Behavioral Response to Amphetamine
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Conclusions and Hypothesis:

These studies suggest that stress can affect DA 
transmission and behavior via distinct mechanisms:

Stressors that are behaviorally activating tend to increase DA
neuron drive in a context-dependent manner, whereas those
associated with depressed conditions attenuate DA neuron drive.

The population activity, or number of dopamine neurons firing, we
propose reflects the responsivity of the DA system to external
stimuli.
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